Contents

I. NOTES OF INTEREST
 A. Vegetable Crops Calendar.

II. COMMERCIAL VEGETABLES

III. VEGETABLE GARDENING
 A. Minigardening

IV. 1990-1994 VEGETARIAN INDEX

Note: Anyone is free to use the information in this newsletter.
Whenever possible, please give credit to the authors. The purpose of
trade names in this publication is solely for the purpose of providing
information and does not necessarily constitute a recommendation of
the product.
I. NOTES OF INTEREST

A. Vegetable Crops Calendar.

II. COMMERCIAL VEGETABLES

Standard watermelons weigh from 18 to 35 lbs and represent most of the commercial crop grown in Florida. Icebox watermelons weigh 6 to 12 lbs each and are grown on a small acreage. Seedless watermelons, weighing 12 to 18 lbs, also are grown in Florida on a limited scale. Florida produced 8.3 million cwt of watermelons of all types from 37,000 harvested acres in 1992-93 which provided an average yield of 225 cwt/acre. The average price was $8.00/cwt providing a crop value exceeding $66 million which accounted for 3.9% of the gross returns to the state's vegetable growers.

Until recently, the Florida crop was about equally divided among open pollinated and hybrid varieties of Crimson Sweet, Charleston Gray, and Jubilee types. A noticeable decline in Charleston Gray and Jubilee production has been replaced largely by increases in production of Allsweet and blocky Crimson Sweet types.

The purpose of this trial was to evaluate some of the recently introduced commercial and experimental hybrids of the Crimson Sweet and Allsweet types.

The Eau Gallie fine sand was prepared in early February by incorporation of 0-1.2-0 lb N-P_2O_5-K_2O per 100 linear bed feet (lbf). Beds were formed and fumigated with methyl bromide/chloropicrin, 67:33 at 2.3 lb/100 lb. Banded fertilizer was applied in shallow grooves on the bed shoulders at 2.7-0-3.8 lb N-P_2O_5-K_2O/100 lbf after the beds were pressed and before application of the black polyethylene mulch. The total fertilizer applied was equivalent to 130-60-182 lb N-P_2O_5-K_2O/acre. The final beds were 32 in. wide and 8 in. high and were spaced on 9 ft centers, with four beds between seepage irrigation/drainage ditches which were on 41 ft centers. The standard watermelons were planted in rows adjacent to the ditches and also served as pollenizers for seedless watermelons that were being evaluated in the two center beds of each land.

The watermelons were direct-seeded on 15 February in holes punched in the polyethylene mulch at 3 ft in-row spacing. Harvests were made on 16 May, 26 May and 9 June. Marketable fruit (U.S. No. 1 or better) according to U.S. Standards for Grades were separated from culls and counted and weighed individually.

Early yields (first harvest) varied from 90 cwt/acre for 'Regency' to 336 cwt/acre for 'Sangria'. Average fruit weight ranged from 17.6 lb for XPH 6190 to 29.1 lb for 'Summer Flavor 520'. Soluble solids varied from 11.8% for 'Starbrite' to 14.1% for 'Sultan'. Soluble solids for early harvested fruit of all entries exceeded the 10% specified for optional use to designate very good internal quality in the U.S. Standards for Grades of Watermelons. The proportion of sampled fruit with hollowheart varied from 0 for ASM 6564, 'Starbrite', 'Fiesta', and 'Sangria' to 100% for 'Royal Star'. The severity (average width of fruit cracks) of hollowheart ranged from 0 to 3.3 in. for the aforementioned entries.

Total yields in the replicated trial ranged from 390 cwt/acre for 'Regency' to 551 cwt/acre for ASM 6564 but there were no statistical differences...
among the entries. Average fruit weight varied from 17.6 lb for XPH 6190 to 25.2 lb for 'Starbrite'. Soluble solids of fruit over the season were uniformly high ranging from 11.2% for RXW 105 to 13.0% for 'Sultan'. The incidence and severity of hollowheart was less for the total harvest than for the early harvest. Nonetheless, 51% of the 'Royal Star' fruit that were sampled had hollowheart and the average crack width was 1.5 in.

Watermelon yields were similar to those obtained at this location in 1991 and 1992 but not as high as those obtained in 1993. Based on results of this and previous trials, the following Allsweet type and blocky Crimson Sweet type varieties are expected to perform well in Florida: 'Fiesta', 'Royal Sweet', 'Sangria' and 'Starbrite'.

(Maynard, Vegetarian 95-02)

III. VEGETABLE GARDENING

A. Minigardening

One gardening variation that seems to have caught on with even the most novice gardener is referred to as "minigardening". It involves growing vegetables in some sort of container, utilizing either garden soil or a prepared mixture called a soil substitute. It can also mean gardening on a small plot.

Minigardening is practical for those who do not have sufficient yard space for an outdoor garden. Even persons living in apartments and condominiums can grow at least a few vegetables by planting a minigarden. On problem soils, such as the hard, calcareous flatwoods of Dade County and the porous, excessively drained soils found in a number of counties, the entire outdoor garden might be constructed above ground. Areas suitable are along fences and in fence corners, in and around flower beds, on patios, porches, and balconies, and even on rooftops. Such small-scale container culture can be both practical and ornamental if properly and imaginatively done.

A wide assortment of containers might be used, ranging from hanging baskets and flower pots to tubs, bean hampers, and refuse cans. Most any container is suitable as long as it is sufficiently durable and large enough to hold the fully-grown plant or plants. In this respect, gardeners are limited only by their imagination. An old bathtub might yield the prize tomatoes of the neighborhood, while an old plastic beach ball cut in half could become an excellent herb container.

A "grow-box" is a raised bed enclosed on all four sides by a wooden frame. A typical size is 4'x8' and 5'x10'. The wooden frame should be constructed of 2x6 inch (or wider) rot-resistant lumber. Pressure treated and creosoted timbers may be used with no ill effects from the wood preservative. Cedar wood is an excellent choice. An abandoned cypress-wood skiff was utilized as a grow-box by one gardener that I knew. Even fiberglass models would make excellent grow-boxes.

Obviously, the larger kinds of vegetables require more space and larger containers. For example, miniature tomatoes such as 'Micro-Tom', 'Tiny Tim', 'Fleragold Basket', 'Florida Basket', 'Florida Petite', and 'Basket King', herbs and strawberries, can be grown in hanging baskets, while 'Better Boy' and 'Patio' need 5 gallon buckets.

(Stephens, Vegetarian 95-02)
1990 - 1994 VEGETARIAN INDEX

ASPARAGUS
Variety Trial ... 91-5:34

BROCCOLI
Variety Selection .. 90-6:2-3
Variety Trial ... 91-1:1-6, 91-10:2-3

CABBAGE
Chinese Cabbage Production 91-5:2-3
Chinese Cabbage - Central Fla. 91-2:3
Pepper Spot (Gomashio) 93-3:1-2
Tipburn and Internal Rot 93-6:1-2

CANTALOUPE
Mango Melon ... 93-8:5
Muskmelon EPA Definition 91-3:2-3
Variety Trial ... 91-8:2-3

CARROT
Florida Production .. 91-9:2-3
HUA Project Carrot Study 93-5:1-2
Soil Moisture ... 92-4:2-3
Update on Yields and P Fertilization 94-7:4

CELERY
Yield and Stalk Size 94-12:1-2

CERTIFICATION
Professional Standards 93-2:4

CHLORINE
Effects of Chlorine on Plants 91-3:2

CONFERENCES
FACTS ... 93-12:5-6
Micro-Irrigation .. 92-4:1
Nat’l Pepper Conference 90-3:3
Post Harvest ... 91-4:5-6, 90-9:3-4
Seed Seminar ... 90-1:2-3, 94-1:1-2
Specialty Vegetable .. 91-10:3-4
Stand Establishment 90-4:6, 91-11:3, 92-2:3-4, 92-10:1-2
Strawberry .. 91-1:5-6
Suwanee Valley .. 90-12:2-3, 91-12:1

CUCURBIT
(See watermelon, pumpkin, squash, etc.)
Pollinators .. 90-5:3-5
Variety Trials ... 90-10:3-4

EGGPLANT
Potassium Response .. 92-1:2-3

ENTOMOLOGY
Alternatives to Chemical Pest Control 93-5:2-4
Ants .. 91-7:6-7
Healthy Plant Resistance 94-12:3-4

FERTILIZERS
Blossom-end Rot ... 90-8:3-5
Drip Application Frequency 91-6:2-4
Fertilizer Demonstration 92-4:3
IFAS Recommendation Process 92-9:4
Lb/A .. 91-9:2
Management Pointers 94-9:2
Nitrogen BMP Bill ... 94-7:3-4
Nitrogen Fertilizers 92-3:1-2
Organic Matter .. 91-11:2-3
Organic Soil Amendments for Cucumber Culture 94-4:3
Overfertilization W/Potassium 94-9:2-3

Principles....................................... 90-4:
Rate Reductions.................................. 91-7:2-3
Recommendations............................... 90-6:2
Reduced Fertilizer Demonstration.............. 92-6:3
Seepage Irrigation Band Placement.............. 91-4:4-5

4-H
Bottled Vegetables- Project.................... 93-9:4-6
Congress.. 92-8:5-7
ELM Proposals................................... 91-2:5-6
Horticulture Contest Results..................... 90-8:5-6, 94-8:2-4
Marion County National Winners................. 90-12:6-7
Vegetable Slide Set............................ 92-5:3-5
Water Management Project....................... 90-11:3-4
Water Shortage Aid................................ 91-4:9-10

FUNGICIDES
Bravo 720 on Watermelons....................... 91-3:7, 91-9:4-5
EBDC Use.. 92-4:5-6

GARDEN
1991 Record Size.................................. 92-3:3-4
1992 Record Size.................................. 93-1:3-5
1993 Record Size.................................. 93-7:3-4
1994 Record Size.................................. 94-11:4-5
Big Vegetable Contests Scoring Tables........... 94-2:1-2
Educational Gardens............................. 90-9:5-7
Fifield Hall Organic Gardens...................... 90-4:6-7
FSHS- Garden and Landscape Section.............. 94-5:4
Gardening Guide Rev............................. 91-12:6-7
Gardening Survey- Palm Beach County............ 94-10:5-4
Growing Tomatoes the Japanese Ring Method...... 94-3:2-4
Largest Vegetables in '90....................... 90-2:5-6, 90-7:5-7
Largest Vegetables in '91....................... 91-6:4-5
Largest Vegetable Varieties..................... 92-7:4-5
Organic Gardening Research and Education Park... 93-6:2-4
Varieties... 94-1:2-3
Vegetable Gardening Guide Rev.................... 90-3:5-6

GARLIC
Production Potential............................. 90-10:2-3

GREENHOUSE VEGETABLES
Florida Meeting................................... 90-12:3-5

HYDROLOGY
Lake Apopka Unit Project....................... 92-12:4

INSTITUTES
Post-Harvest...................................... 92-10:2
Sweet Corn....................................... 91-12:1
Tomato.. 91-8:4-5, 91-9:3-4, 93-7:2-3, 94-6:6-7
Vine Crops....................................... 92-11:1-2
Watermelon...................................... 91-1:4-5

IRRIGATION
Drip Irrigation Survey- Vegetables.............. 93-7:1
Drip Irrigation Survey- Continued.............. 93-9:1
Micro-Irrigated Vegetable Beds.................. 90-1:6-7

MUSHROOMS
Fresh Florida Varieties......................... 94-9:3-5

NEMATICIDES
Clandosan.. 90-10:5-7
Vapam.. 91-11:7-8, 92-10:5-7

ONIONS
Prowl Supplemental Labeling.................... 93-10:4
Day Length Effects.............................. 90-12:6
Storage Quality.................................. 91-11:5-6

ORGANIC FARMING
Cucumbers and Muskmelons...................... 93-11:6-7
Economics.. 91-3:3

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida Council on Certification</td>
<td>90-12:7</td>
</tr>
<tr>
<td>Nitrogen Fertilizers</td>
<td>92-3:1-2</td>
</tr>
<tr>
<td>Organically Grown</td>
<td>92-4:3-5</td>
</tr>
<tr>
<td>Organic Gardening Research and Education Park</td>
<td>93-6:2-4</td>
</tr>
<tr>
<td>Support Industries</td>
<td>90-7:4-5</td>
</tr>
<tr>
<td>Survey Results</td>
<td>94-10:4</td>
</tr>
<tr>
<td>PEPPERS</td>
<td></td>
</tr>
<tr>
<td>Maturity Yields</td>
<td>90-7:3-4</td>
</tr>
<tr>
<td>Pepper Carton</td>
<td>92-9:5</td>
</tr>
<tr>
<td>Petiole Sap Testing</td>
<td>93-2:1-2</td>
</tr>
<tr>
<td>Scotch Bonnet Variety</td>
<td>92-9:4-5</td>
</tr>
<tr>
<td>Transplant Depth</td>
<td>92-11:2-3</td>
</tr>
<tr>
<td>PLANT & SOIL ANALYSIS</td>
<td></td>
</tr>
<tr>
<td>Changes to Form</td>
<td>91-3:2</td>
</tr>
<tr>
<td>Interpretation</td>
<td>91-9:2</td>
</tr>
<tr>
<td>Tissue Testing</td>
<td>91-3:3-4</td>
</tr>
<tr>
<td>Testing Plant Sap</td>
<td>91-12:4-6</td>
</tr>
<tr>
<td>PLASTICS</td>
<td></td>
</tr>
<tr>
<td>Fall Temperatures Under Plastic</td>
<td>94-7:1-2</td>
</tr>
<tr>
<td>Plastics Disposal</td>
<td>94-11:1-2</td>
</tr>
<tr>
<td>POST HARVEST</td>
<td></td>
</tr>
<tr>
<td>Cold Storage Air Quality</td>
<td>90-5:6, 90-6:4-6</td>
</tr>
<tr>
<td>Pepper Carton</td>
<td>92-9:5</td>
</tr>
<tr>
<td>Ripening Tomato Simulations</td>
<td>90-1:7-8</td>
</tr>
<tr>
<td>Effective Sanitation of Packing Lines</td>
<td>94-11:2-3</td>
</tr>
<tr>
<td>Tomato Packing Line Improvements</td>
<td>91-10:4-5</td>
</tr>
<tr>
<td>Wax Labeling Requirements</td>
<td>93-4:1-2</td>
</tr>
<tr>
<td>POTATO</td>
<td></td>
</tr>
<tr>
<td>Disease Situation for 1993-94</td>
<td>93-11:4-6</td>
</tr>
<tr>
<td>Fertilizer Demonstration</td>
<td>92-4:3</td>
</tr>
<tr>
<td>PUMPKIN</td>
<td></td>
</tr>
<tr>
<td>Calabaza Production</td>
<td>91-3:4-5</td>
</tr>
<tr>
<td>Fall Production</td>
<td>90-5:5</td>
</tr>
<tr>
<td>Florida Varieties</td>
<td>94-5:2-3</td>
</tr>
<tr>
<td>SHIPPING</td>
<td></td>
</tr>
<tr>
<td>Carton Standards</td>
<td>92-8:1-2</td>
</tr>
<tr>
<td>Carton Standardizing Promotion</td>
<td>93-2:4-5</td>
</tr>
<tr>
<td>Carton Standards for Peppers</td>
<td>92-9:5</td>
</tr>
<tr>
<td>Handling and Shipping</td>
<td>92-1:4-5</td>
</tr>
<tr>
<td>Ripening Tomato Simulations</td>
<td>90-1:7-8</td>
</tr>
<tr>
<td>Vegetables</td>
<td>91-7:4-5</td>
</tr>
<tr>
<td>SNAPBEANS</td>
<td></td>
</tr>
<tr>
<td>N Fertilization</td>
<td>92-8:2-3</td>
</tr>
<tr>
<td>SOAPS</td>
<td></td>
</tr>
<tr>
<td>Detergent Toxicity</td>
<td>92-9:1-3</td>
</tr>
<tr>
<td>Foliar Detergent Sprays</td>
<td>92-2:1-2</td>
</tr>
<tr>
<td>SOIL AMENDMENTS</td>
<td></td>
</tr>
<tr>
<td>Banding Organic Soil Amendments and Fertilizers</td>
<td>94-4:3-4</td>
</tr>
<tr>
<td>Compost Trial</td>
<td>91-5:5</td>
</tr>
<tr>
<td>Oak Leaves as an Amendment</td>
<td>92-9:6-7</td>
</tr>
<tr>
<td>Organic Amendments</td>
<td>92-1:5-7</td>
</tr>
<tr>
<td>Effects of Organic Soil Amendments on Collards</td>
<td>93-4:5-6</td>
</tr>
<tr>
<td>Yard Waste Compost</td>
<td>93-12:7, 92-11:5-7</td>
</tr>
<tr>
<td>SOIL TEMPERATURES</td>
<td></td>
</tr>
<tr>
<td>Fall Temperatures Under Plastic</td>
<td>94-7:1-2</td>
</tr>
<tr>
<td>SOIL TESTS</td>
<td></td>
</tr>
<tr>
<td>ESTL Changes</td>
<td>90-3:2</td>
</tr>
<tr>
<td>SOUTHERN PEAS</td>
<td></td>
</tr>
<tr>
<td>Organic Amendments</td>
<td>92-1:5-7</td>
</tr>
<tr>
<td>SPINACH</td>
<td></td>
</tr>
<tr>
<td>Variety Trial</td>
<td>94-1:1-3, 91-4:2-4</td>
</tr>
</tbody>
</table>
SQUASH
- Summer Squash Defined 91-10:6
- Summer Squash Evaluation 93-9:1-2
- Winter Squash Amendment 91-11:6

STATE FAIR 1993 ... 92-12:6-7

STRAWBERRY
- N and K Sap Testing .. 93-1:1
- Atmospheric Treatments for Shipping 90-3:4-5

SWEET CORN
- Best Variety .. 92-2:4
- Herbicide vs. Cultivar 91-9:5-6
- HUA Project Sweet Corn Study 93-5:2
- Inflorescence Abnormalities 92-6:3-4

SWEET POTATO
- Weevil Varietal Resistance 92-2:4-6

TOMATOES
- Catfacing in Tomatoes and Gibberellic Acid 94-3:1-2
- Cherry Tomato Wholesale Prices 93-1:2-3
- Copper Toxicity .. 90-9:4-5
- Florida Varieties .. 94-6:1-4
- Geminivirus Subcommittee 90-3:2-3, 90-5:2-3, 90-12:5-6
- Geminivirus Subcommittee 91-11:4-5
- Geminivirus Tomato Yield 90-1:4-5
- Geminivirus and Whiteflies 90-1:6
- Gray Wall in Florida: Factors and Control 93-2:2-3
- Gray Wall Revisited 93-4:2-3
- Growing By The Mound Method 93-3:2-3
- Reduced Fertilizer Demonstration 92-6:3
- Seasonal Production 92-1:1-2
- Size Revision .. 91-9:1
- Thrips and Virus Control 90-4:4-5
- Tomatillo ... 92-7:1-2
- Tomato Leaf Roll .. 90-5:7-8
- Tomato Pickinghouse Improvements 93-10:4-5
- Tomato Transplant Age Studies 91-4:6
- Transplant Depth Evaluation 94-10:1-2
- Varieties ... 92-1:1-2, 94-6:1-2

TRANSLANTS
- 1991 Survey .. 91-2:3-4
- Age Studies .. 91-4:6
- Controlling Height ... 90-8:5
- Depth Impact on Tomato Yield 94-10:1-2
- Greenhouse Industry-Fla 90-2:2
- Growers Association 94-4:3-4
- Handling and Shipping 92-1:4-5
- Planting Depths of Bell Peppers 92-11:2-3
- Plug pH ... 90-10:4-5
- Survey .. 92-5:1-2
- Virus Detection ... 91-7:5-6
- Watermelon Production 91-7:5-6

VEGETABLE-MISCELLANEOUS
- Detergent Toxicity ... 92-9:1-3
- Foliar Detergent Sprays 92-2:1-2
- Freeze Covers ... 90-1:3-4
- Herbs .. 93-12:1-3, 91-1:7-8
- Herb Directory ... 93-10:4-6
- Minor Vegetable Manual 90-10:5
- Miscellaneous .. 90-6:6-7
- Petiole Sap Test Guidelines 93-12:2-3
- Plant Sap Testing .. 91-12:4-6
- Season Timing .. 90-3:3-4
- Sustainable Agriculture 91-1:2-4
- 1991-92 Value of Florida Vegetables 93-9:3-4
- Variety Demonstrations 90-9:2-3
- Yields in Florida ... 92-10:2-4
WATERMELONS

- Bee Attractants .. 92-4:1-2
- N Fertilization .. 93-4:3-4
- Icebox Varieties 90-11:3
- Planting Depth Trials 93-12:3-4
- Standard and Icebox Variety Evaluations 92-12:2-3
- Seedless Variety Trials .. 93-8-1-4, 92-11:3-5, 91-12:3-4
- Transplant Production 90-2:2-4
- Variety Trial 91-8:3-4, 93-10:2-3

WEED CONTROL

- Alachlor Withdrawal 90-11:2
- Bolero SC ... 90-2:5
- Bolero SC on Celery, Lettuce, Endive, Escarole ... 91-3:6
- Bravo 720 on Watermelons 91-3:7, 91-9:4-5
- Cobra Usage on Tomato and Pepper Row Middles 92-12:5, 94-10:3
- Command 4 EC for Peppers 92-3:2-3
- Diquat Labeling Needs for Local Use on Tomatoes, Eggplant and Green Peppers 94-8:1
- Diquat on Tomatoes and Peppers 90-11:2-3, 91-11:7
- Dual on Cabbage 91-3:6
- Dual on Pepper Row Middles 94-12:2-3
- Dual SE on Sweet Corn 93-4:5
- Enquik on Strawberries 90-9:5
- Gramoxone Extra on Cabbage 92-12:5
- Gramoxone on Dry Beans 90-7:5
- Gramoxone Extra on Eggplant 94-3:2
- ID Publication 90-11:4-5
- IR-4 Meeting .. 92-9:5-6
- IR-4 Tolerances 92-5:2-3
- Last Year’s Applications 90-5:7
- Lorox DF on Parsley 91-2:5
- Off Season .. 92-7:2
- Paraquat on Melons and Lettuce 91-4:8
- Poast on Sweet Corn 91-5:4
- Poast on Bulb Vegetables 91-1:7
- Poast on Legumes 90-5:7
- Pursuit on Legumes 91-4:7
- Record-keeping 90-5:7
- Roundup Labeling 92-12:5-6
- Sulfonyle-Urea on Sweet Corn 91-9:5-6
- Tank Mixing Herbicides 90-2:4-5
- Triazine Compounds Carcinogenic 94-12:3
- Weed ID .. 90-11:4-5

(Vavrina, Vegetarian 95-2)