This month begins the first installment of a series on cover crops. The objective is to assist in the selection cover crop species and varieties that are appropriate to the particular objectives of a farming system, and to provide information on production. Research has demonstrated that cover crops improve nutrient cycling, supply nitrogen, improve soil physical properties, reduce erosion, suppress weeds and serve as a habitat for beneficial insects. Care must be taken to ensure that the species you select is not an alternate host to pests, that it can be managed with available labor and appropriate equipment and that it can be integrated within the crop rotation so that plant and kill date occur at the proper time to obtain the maximum benefit. We begin this month with buckwheat (*Fagopyrum esculentum* Moench), a cover crop that was once used extensively by vegetable producers during short breaks in rotation. This cover crop has potential for adoption in the north central part of Florida, especially as a weed suppressive mulch in short rotation between harvested crops.

History and buckwheat industry overview

Buckwheat (Fig. 1) is a cool season annual introduced to the New World by European colonists in the 17th century. Evidence suggests it may have been cultivated in China as far back as 5000 B.C. (Ohnishi, 1998). Species of buckwheat grown commercially include *Fagopyrum sagittatum* Gilib, *F. emarginatum* Moench, *F. esculentum*, and *F. tartaricum* (L.) Gaertn. It is a multipurpose crop mainly cultivated as forage or milled into
flour for human consumption. Buckwheat is unique among commercial grains in that it is a member of the Polygonaceae family, rather than Poaceae, thus earning the classification as a pseudocereal. Diseases of dicot cereals are not important for buckwheat, nor are insects a problem (Robinson, 1980). Wild buckwheat (*Polygonum convolvulus* L.) is an annual weed resembling buckwheat but with smaller seeds and a vining growth habit.

In Japan, Russia, and northern China, buckwheat is an important cash crop and food source, with a substantial effort by researchers to develop more nutritious and pathogen resistant varieties. In the Manitoba province of Canada, most buckwheat production is targeted for export to Japan for soba noodle production. Over one and a half million hectares are produced worldwide (Myers and Meinke, 1994), and Russia has the greatest area in production.

In the U.S., buckwheat reached the height of its popularity in 1866, when 204,120 metric tons on over 404,800 ha were produced for use as a forage crop as well as a grain for making flour (Bailey, 1912). Production declined to 18,200 ha in 1964, the same year the USDA stopped recording estimates of buckwheat production (Robinson, 1980). In the 1970's, buckwheat had a slight resurgence in popularity as the interest in healthy and natural foods developed, increasing demands for buckwheat flour used domestically in breakfast cereals (Oplinger et al., 1989). The grain has an amino acid composition nutritionally superior to all other cereals, and is especially high in the amino acid lysine, which is essential to human nutrition and notably deficient in rice (*Oryza*
sativa L.) and wheat (*Triticum aestivum* L. subsp. *aestivum*) (Robinson, 1980). The middlings (cotyledons and seed coats) are used as food for livestock or made into flour for human consumption. Buckwheat hulls are sometimes combined with the middlings and marketed as buckwheat bran. Domestically, the hulls are more often used as soil mulch and poultry litter, while in Japan they are used as a fill for pillows (Oplinger et al., 1989). In the U.S., buckwheat is used as a nectar source for honeybees, and an hectare of buckwheat can produce nectar sufficient for 168 kg of honey. Today, buckwheat grown for grain is produced in Minnesota, Pennsylvania, New York, and to a lesser degree in Michigan, Wisconsin and North Dakota. In the southeast, buckwheat is mostly grown as a cover crop.

Growth Habits and Environmental Requirements

In Florida, *F. esculentum* is not native, although some populations occur within the state (Fig. 2). Climbing false buckwheat [*Polygonum scandens* L. *var cristatum* (Engelm. & A. Gray) Gleason] is native to our state, and populations are found in 11 counties north of Marion county (Fig. 3). Varieties available include new semi-dwarf types such as ‘Manor’ and ‘Mancan’. These are large seeded varieties that have larger stems and leaves and produce maximum amounts of seed. Seed is readily available from many outlets including Birkett Mills, Johnny’s Selected Seeds, and Peaceful Valley Farm Supply.

Buckwheat has an indeterminate growth habit, growing up to 90 cm (35 inches) vegetatively, and flowering continuously until natural senescence, or termination by
frost. It germinates in three to five days, and flowers in approximately five weeks. The crop requires 12 weeks to harvest mature seed. Buckwheat is tolerant of a wide range of soil types and fertility levels, but performs best when the climate is cool and moist. It germinates at temperatures between 7º and 40ºC (45 – 104 ºF). It is well suited to production on sandy soils, as clayey or nutrient rich soils may cause irreversible lodging. Although the crop will perform well on residual fertilizer, some nitrogen is needed to ensure optimal response. For grain production, recommended nitrogen rates in Wisconsin and Minnesota range from 1 to 58 kg ha⁻¹ (1 – 52 lb a⁻¹) when organic matter is less than two percent (Oplinger et al., 1989). Buckwheat can tolerate acidic soils, and will respond to liming when the pH is less than five.

The dense, fibrous root system is concentrated in the top 25 cm (10 inches) of the soil, and may perform better than cereal grains on low fertility soils due in part to its root morphology (Bowman et al., 1998). The short taproot and its branches account for three to eight percent of the dry weight of the plant (Robinson, 1980). The percent of dry weight is much less than the root system of small grains, which may comprise 6 to 15 percent of the total weight of the plant. Because of its small size, the root system acquires water from a limited volume of soil, which may be a partial explanation for wilting that occurs in hot, dry weather. It is planted in the northeastern states and Canada in the summer, and in the southeastern U.S., it is typically planted in the early spring or fall.

Buckwheat produces a single stalk per seed, and branching depends on seeding. Plants will develop more branches per plant in thin stands, while thick stands result in
less branching, lower stalk diameter, and the susceptibility to lodge (Robinson, 1980). Because of its short growing season, buckwheat can be included in rotations between cash crops. The unbranched basal stem is hollow in the center, and once incorporated into the soil decomposes rapidly, providing nutrients to the subsequent crop. Due to its rapid decomposition, it may not be suitable as surface mulch on erodible soils.

Typical biomass production for buckwheat ranges from 2.5 to 3.5 t ha\(^{-1}\) (2.2 to 3.0 t a\(^{-1}\)). In Pennsylvania, over 7 t ha\(^{-1}\) (6.25 t a\(^{-1}\)) dry matter per hectare can be produced in six to eight weeks (Oplinger et al., 1989). When planted as green manure or living mulch, typical planting densities range from 56-67 kg ha\(^{-1}\) drilled (50-60 lbs a\(^{-1}\)) to 108 kg ha\(^{-1}\) (96 lbs a\(^{-1}\)) broadcast. Domestically, seeding rates for \textit{F. esculentum} grown as a grain crop are less, ranging from 40 to 80 kg ha\(^{-1}\) (36-71 lbs a\(^{-1}\)). Best results are obtained when buckwheat is drilled to a depth of 1.5 to 3.5 cm (0.5 – 1.5 in deep) in 15-20 cm rows (6 to 8 inch rows), although some growers prefer to broadcast seed.

Buckwheat is day neutral in response to photoperiod, and consequently the number of days to flowering is equally influenced by soil fertility, temperature, and moisture (Robinson, 1980). Buckwheat is self-incompatible, and requires insect pollination to ensure cross-pollination. European honey bees \textit{(Apis mellifera} L.\textit{)} are frequently considered to be the most abundant pollinators, although research in central New York indicated the honey bee may not be the most effective pollinator due to its large size compared to the flower (Bjorkman, 1995). Approximately 40,000 bees ha\(^{-1}\) (or one hive every 2 acres) are needed to pollinate a buckwheat crop (Björkman, 1995).
Buckwheat as a nutrient catch crop

Buckwheat has little ability to capture residual nitrogen, but some researchers have demonstrated buckwheat’s ability to take up phosphorus and other nutrients (including calcium) (Zhu et al., 2002) which are released back into the soil in a plant available form following incorporation of buckwheat residue into the soil (Bowman et al., 1998). The roots of buckwheat exude oxalic acid that allows buckwheat to grow well in soils that are high in aluminum. The mechanism for this resistance is believed to be related to the immobilization and detoxification of Al by phosphorus in the root tissues (Zhu et al., 2002). Additional support for phosphorus acquisition and release is provided by Annan and Amberger (1989) who hypothesized the high activity of acid phosphatase in the rhizosphere contributed to the release of phosphorus acquired under low concentrations of soil P. Buckwheat also has the capability to use P from organic sources.

Interactions of Buckwheat and Insects

Buckwheat can be managed to promote flowering throughout the summer in cool climates. For this reason, it has been noted for its ability to attract a wide range of beneficial insects including predatory wasps (Hymenoptera: Sphecidae, Eumenidae, and Vespidae), syrphids, and tachinid parasitic flies (Bugg and Dutcher, 1989; Platt et al., 1999). Planting border strips of buckwheat near zucchini resulted in a decrease of aphid (*Aphis gossypii* Glover) densities and therefore a reduction in the incidence of aphid transmitted viruses in the cash crop (Hooks et al., 1998). Buckwheat has few insect pests.
In a Florida trial, a living mulch of buckwheat was compared to bare ground, reflective and white mulches to control homopteran pests in zucchini (Frank and Liburd, 2005). The living mulch of buckwheat did reduce the number of whiteflies, and had higher natural enemy populations than synthetic mulch or bare ground treatments, but also significantly lowered zucchini yields.

Buckwheat is reported to be an alternate host of several important economic pests of vegetable crops including chili thrips (http://cta.ufl.edu/PDFs/S-dorsalis-CAPS-PRA.pdf), European corn borer (http://creatures.ifas.ufl.edu/field/e_corn_borer.htm), rice weevil (http://edis.ifas.ufl.edu/IG120), and fall armyworm (http://edis.ifas.ufl.edu/IN255), and root legions nematode *Pratylenchus penetrans* (Marks and Townshend, 1973).

Weed control and weed suppression by buckwheat

There are currently no herbicides registered in the U.S. for weed control in buckwheat (Myers and Meinke, 1994). Weeds commonly a problem in northeastern states include redroot pigweed (*Amaranthus retroflexus* L.) and common lambsquarters (*Chenopodium album* L.). Growers maximize the weed control potential by timing the planting date early enough that buckwheat successfully competes with slower emerging weeds. Often, thick stands are planted to out compete weeds, but that also creates complications when cultivating mechanically when buckwheat is grown as a cash crop. In Canada, only diclofop methyl is registered for control of some annual grasses in buckwheat, and no labels exist for broadleaf weed control (Wall and Smith, 1999). In the
U.S., no herbicides are registered, but Poast might be labeled in the future for post-emergence grass control. Buckwheat is sensitive to broadleaf herbicides, and germination may be hindered by residues of atrazine, trifluralin, and sulfonylurea herbicides.

Because buckwheat germinates quickly, it produces a dense canopy quickly, shading the soil and acting as a good competitor against weeds. Scientists have reported effective control of Canada thistle \(\text{Cirsium arvense} \) (L.) Scop., sowthistle \(\text{Sonchus oleraceus} \) L., leafy spurge \(\text{Euphorbia esula} \) L., Russian napweed \(\text{Centaurea repens} \) L., and perennial peppergrass \(\text{Lepidium latifolium} \) L. by buckwheat (Marshall and Pomeranz, 1982). Samson (1991) evaluated cover crops following winter wheat in Quebec and found buckwheat \(\text{F. esculentum} \) and oilseed radish \(\text{Raphanus sativus} \) L. var. \(\text{oleiferus} \) Stokes on cultivated soil reduced weed biomass production more than application of glyphosate herbicide. Although several scientists have suggested allelopathy as the possible mechanism of weed inhibition, it has not been adequately demonstrated (Cook, 1989, Eskelsen, 1995).

Economics

Total domestic production was 52.8 million tons in 2000 (Björkman, 2001). Total cost of production ranges from $8.00 to $32.00 per acre, including operation and labor. Typical grain yields in the northeastern U.S. range from 1100 to 1700 kg ha\(^{-1}\) (980 to 1520 lb a\(^{-1}\)).
Buckwheat is moderately priced, and will reseed in northern climates to produce a crop the following year. In Florida, germination of seed can occur immediately following seed drop in warm wet weather, so producers should be prepared to follow with light tillage to eliminate unwanted volunteers. The succulent stems of buckwheat allow for easy plow down. Using typical seeding rates for the southeastern U.S., 50 lbs per acre buckwheat is more expensive than the same rate of rye ($14.00 verses $10.00 per hectare) but less than hairy vetch at 34 kg ha\(^{-1}\) (30 lb a\(^{-1}\) at a cost of ($27.00 per acre).

Summary
In Florida, buckwheat will most likely thrive in areas that have cool and wet conditions, such as north central and north Florida in spring or early fall. Although the USDA reports at least one wild population of *F. esculentum* in South Florida (Fig.1), previous research does not support use of buckwheat based on observations of poor germination and growth (Li et al., 2006). Buckwheat is best grown as a weed suppressive cover between high value crops in spring or fall. Buckwheat is susceptible to frost and high heat/ low moisture conditions, so to gain best benefits; it should be planted at least 60 days before the first expected frost date or before the hot and dry season. Buckwheat should be drilled into a clean field. If following a winter cereal, secondary tillage to eliminate volunteers should occur prior to planting buckwheat. Tillage with a disk harrow or similar implement should occur when flowers begin to turn brown to prevent seed maturation and subsequent volunteer buckwheat.

Literature Cited

Zhu, Y. G., Y. Q. He, S. E. Smith, and F. A. Smith. 2002. Buckwheat (Fagopyrum esculentum Moench) has high capacity to take up phosphorus (P) from calcium (Ca)-bound source. Plant Soil 239:1-8.

Captions for Figures

Figure 2. Distribution of Fagopyrum esculentum (Moench) in Florida. Image from the Atlas of Florida Vascular Plants, Institute for Systematic Botany, University of South Florida. http://www.plantatlas.usf.edu/default.asp

Figure 3. Distribution of Polygonum scandens var. cristatum in Florida. Image from the Atlas of Florida Vascular Plants, Institute for Systematic Botany, University of South Florida. http://www.plantatlas.usf.edu/default.asp

**
Figure 2. Distribution of *Fagopyrum esculentum* (Moench) in Florida. Image from the Atlas of Florida Vascular Plants, Institute for Systematic Botany, University of South Florida. http://www.plantatlas.usf.edu/default.asp

Figure 3. Distribution of *Polygonum scandens var. cristatum* in Florida. Image from the Atlas of Florida Vascular Plants, Institute for Systematic Botany, University of South Florida. http://www.plantatlas.usf.edu/default.asp
Fig. 1. Commercially available buckwheat, *F. esculentum*. Image from the Atlas of Florida Vascular Plants, Institute for Systematic Botany, University of South Florida.
http://www.plantatlas.usf.edu/default.asp